抽象的

Enhanced One-Step Fermentative Production of Epirubicin by Combination of Mutagenesis and Genetic Engineering in Doxorubicin-Producing Streptomyces peucetius

Xiaoru Wang, Xiaorong Tian, Xiaofang Shen, Yuanjie Wu, Songbai Yang and Shaoxin Chen

Epirubicin, a clinically important anthracycline-type antitumor drug, is industrially produced through a tedious chemical semisynthetic process. Here, we developed an engineered Streptomyces peucetius through a combinatorial strategy of strain mutation and metabolic engineering for efficient epirubicin biosynthesis. First, S. peucetius SIPI-DU-1557, which overproduces doxorubicin, was cultured through a doxorubicin-resistant screening method, and used as a host strain for genetic modification. Next, EvaE from Amycolatopsis orientalis, found through protein sequence comparisons of various exogenous TDP-4-ketoreductases, increased epirubicin production significantly. Subsequently, metabolic engineering strategies were used to enhance epirubicin production by co-expressing key biosynthesis pathway genes, dnrS/dnrQ and desIII/desIV, to strengthen metabolic flux toward epirubicin. The final epirubicin concentrations were 270 mg/L and 252 mg/L in the flask and 5 L fermenter, respectively. These are the highest levels reported, and show that the engineered S. peucetius has potential industrial application in green epirubicin production by direct fermentation with renewable resources.

索引于

化学文摘社 (CAS)
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
开放学术期刊索引 (OAJI)
电子期刊图书馆
参考搜索
哈姆达大学
印度科学网
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多