抽象的

Thermochemical Properties of Mono and Di-fluorinated Ethanol��?s and its Radicals at Different Temperatures.

 Hebah M Abdel-Wahab* and Joseph W Bozzelli

Thermochemical properties of fluorinated alcohols are needed for understanding their stability and reactions in the environment and in thermal process. Structures and thermochemical properties of these species were determined by the Gaussian M-062x/6-31+g (d,p) calculation. Contributions of entropy, S°298°K, and heat capacities, Cp(T) due to vibration, translation, and external rotation of the molecules were calculated based on the vibration frequencies and structures obtained from the M-062x/6-31+g (d,p) density functional method. Potential barriers are calculated using M-062x/6-31+g (d,p) density functional method and are used to calculate rotor contributions to entropy and heat capacity using integration over energy levels of rotational potential. Enthalpies of formation for 19 fluorinated ethanol and some radicals were calculated with a popular ab initio and density functional theory methods: the Gaussian M-062x/6-31+g (d,p) via several series of isodesmic reactions. •. Entropies (S-298°K in cal mol−1 K−1) were estimated using the M-062x/6-31+g (d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S-298°- 1500°K, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curves.  

索引于

谷歌学术
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
电子期刊图书馆
参考搜索
哈姆达大学
印度科学网
学者指导
普布隆斯
米亚尔
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室
早稻田大学图书馆

查看更多