抽象的

Thermal Properties of Butylacrylate (BA) Transesterified and Benzoyl Peroxide (BPO) Cured Coir Fibers

Rout SK, Tripathy BC and Ray PK

In this work the significance of transesterification and curing on the thermal behavior of agro waste coir fibers has been reported. Thermal behaviour of six varieties of fibers i.e. (1) base coir, (2) coir fibers treated with 4% sodium hydroxide [Coir-ONa (4%)], (3) coir transesterfied with n-Butyl acrylate (BA) in presence of Pyridine and Acetone [Coir-BA (Py/ Acetone)], (4) benzoyl peroxide (BPO) cured [Coir-BA (Py/Acetone)] which is [Coir-BA (Py/Acetone)-C-BPO], (5) Coir-ONa (4%) transesterified with butylacrylate [Coir-BA (4% NaOH)] and (6) cured [Coir-BA (4% NaOH)] which is [Coir-BA (4% NaOH)-C-BPO] were studied from their TG, DTG, DTA and DSC. The activation energy involved in the pyrolysis of coirs and the order of reaction has been evaluated with the help of Freeman-Caroll model. It was found that the temperature of completion for degradation (Tf (°C)) of the modified coir was higher than the Base coir. Thermal stability of chemically modified fibers follow the order as Coir-BA (Py/Acetone)-C-BPO>Coir-BA (Py/Acetone)>Coir-BA (4% NaOH)-C-BPO>Coir-BA (4% NaOH)>Coir-ONa (4%)>Base coir. It was observed that transesterification and curing improve the thermal stability of the fibers, making them highly suitable for their applications as good reinforcement materials for designing and fabrication of novel polymeric composites, textile fibers, adsorbents, and adsorbates.

索引于

哥白尼索引
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多