抽象的

The Surprising Consequences of the ALF when Considered in the Context of Two Individually Moving Particles Coupled to Each Other

Ed Chen, Tara Cronin

The Abraham Lorentz Force (ALF) is one of the basic forces discussed in electrodynamics and is the recoil force of a single charged particle emitting radiation under acceleration. The Abraham Lorentz force is a consequence of the conservation of momentum in a system of moving charged particles. This force has been relatively neglected in the literature, where most of the analysis has been limited to one particle systems. However, when the effects of the ALF are analyzed in the context of two particle interacting a surprising consequence arises: the Abraham Lorentz force, through induced magnetic emissions, will propagate through matter in a manner which is analogous to a compression wave that is transmitted from one recoiling particle triggering the adjacent particle through electromagnetic induction. This effect produces an attractive force between all interacting particles, and also predicts a sort of “supergravity” between matter and antimatter which causes them to attract each other at a greater rate than between matter and matter under certain conditions. This supergravity may be used to test the validity of the theory as applied to gravity

索引于

哥白尼索引
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多