抽象的

Photovoltaic Characteristics of ZnO Nanotube Dye-Sensitized Solar Cells and TiO2 Nanostructure

Yahia Chergui, Nadia Nehaoua, and DE Mekki

The electrical transport in nanotube is extremely sensitive to local electrostatic environment due to their small size, large surface to volume ratio and high mobility. Among them, Oxide Zinc and Titanium are friendly for environment and promised materials. Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency but its conversion efficiency is affected by physical and morphological parameters, like thickness, series resistance (Rs), ideality factor (n), saturation current (Is), shunt resistance (Rsh) and photocurrent (Iph) during elaboration as well as their normal use. This paper presents a simulation of photovoltaic characteristics of ZnO nanotube dye-sensitised solar cells and TiO2 nanostructure, by extracting the solar cell parameters which influence directly on solar cell output: conversion efficiency, fill factor, the short circuit photocurrent densities Isc and open-circuit voltage Voc. Furthermore, we review the relationship between geometry and output parameters

索引于

哥白尼索引
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多