抽象的

Development of Wound Healing Scaffold Using Zno and Tio2 Nanoparticles

Younes Beygi-Khosrowshahi*, Fatemeh Samadian

The goal of this experiment is to produce a nanocomposite porous scaffold, using an electrospinning method that has biological properties to use as a skin Tissue Engineering (TE) and wound dressing. Polyhydroxyethyle methacrylate (PHEMA), Polycaprolactone (PCL), Titanium Oxide (TiO2) nanoparticles, and Zinc Oxide (ZnO) nanoparticles, used to fabricate this scaffold. After the polymers were synthesized, both polymers were dissolved in chloroform, and nanoparticles were added. The diameter of the fibers obtained depends on the amount of addition of each nanoparticle, the injection rate of the device and the voltage, and the distance between the collector and the needle. Scanning Electron Microscopy (SEM) images showed the morphology of the scaffold and the cells can adhere well to nanofibers. The mechanical property test showed appropriate mechanical properties for this polymeric scaffold. X-Ray Diffraction Pattern (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) results confirm the successful loading of nanoparticles into the polymer scaffold. Other biological features are characterized with, in vivo assay and MTT and antibacterial assay. The results show that this scaffold is suitable to use as a skin tissue scaffold and wound dress.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

哥白尼索引
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多