Heidi Schalchli、Briceno G 和 Diez MC
?????????????????????????????????????????????????????????????????????????????/??? H2O2 ??????????????????? A. discolor Sp4 ?????? (PP) ?????? (DP) ??????????????????????????? (VOC)????? 2,6-????????????????????? (MnP)??? MnP ???????????????? remazol ?? R (RBBR) ???????????????? VOC ???????????????????????????????????????????????? VOC????? 15 ???????? MnP ? MiP ???163 U L-1 ? 24 U L-1??????? RBBR ???????????????????????????? PP ??? MnP ?????? DP ??? MnP ???
A. discolor ???????? PP ??? DP ?????? M. miehei ????? 62% ? 76%????????? F. oxysporum ???????? 10%???????? VOC ???????????? 50% ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????/??????????????????????????????????????????????Anthracophyllum ?? Sp4 ? M. miehei?? 76%?? B. cinerea?? 20%????????????A. ??? T. versiscolor ? F. oxysporum ????????? 10%??????/???????A. ?? Sp4 ????????????????????? α-????????????????? 1,5-??-2,3-??????3,5-??-4-??????? 3-?-4-??????????????????????A. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? Anthracophyllum ??????????????? (BS) ???????????????????????????????????????? (F1?F2 ? F3)?????????????????????? (??? CPS ? UPS) ???? UPS-F1 ????????????????????????????????????????? (t1/2) ??? 14 ???? 6 ??????????????? A. ???????? DGGE ??????????????????????????????????????????????????????
Atrazine is the most normally utilized herbicide in Chile and maybe on the planet (Mesquini et al. 2015) and it is created by the substance goliath Syngenta as a weed-executioner. It is utilized for corn, sugarcane and sorghum, and decreases broadleaf and verdant weeds during pre-and post-development (Cabrera-Orozco et al. 2016). Notwithstanding, in the European Union, atrazine utilize was restricted in 2004 because of constant in groundwater. Introduction to atrazine can create hermaphroditism in creatures of land and water (Hayes et al. 2002). Also, soil tainting by pesticides, for example, atrazine, during filling of sprayer tanks, can deliver serious natural effects (Castillo et al. 2008; Grigg et al. 1997; Lozier et al. 2012). Pesticides can be corrupted normally by microorganism and white-decay parasites (WRF) are utilized in biotechnological applications to attempt this biodegradation (Morgan et al. 1993; Castillo et al. 2000, 2008). WRF produce extracellular ligninolytic catalysts which corrupt a wide scope of other natural mixes (Rubilar et al. 2012).
The most significant job of WRF is in nature where the life forms reusing dead plant material which would somehow or another amass in the earth making life on earth outlandish. The ligninolytic catalysts from WRF are one of a kind in that they can totally debase lignin to carbon dioxide and water. The ligninolytic chemicals incorporate lignin peroxidases (LiP, EC 1.11.1.14), manganese peroxidases (MnP, EC 1.11.1.13) and laccase (Lcc, EC 1.10.3.2). These catalysts can be incited by lignocellulosic mixes or other natural mixes and their creation is managed by the accessibility of supplements, temperature and inductors or inhibitors (Lorenzo et al. 2002; Rodríguez-Couto and Sanromán 2005; Baldrian 2008). The WRF Anthracophyllum stain produces ligninolytic catalysts and essentially MnP in nearness of contaminations, for example, chlorophenols, as pentachlorophenol (PCP), polycyclic fragrant hydrocarbons (PAHs) and engineered colors (Tortella et al. 2008; Elgueta and Diez 2010; Rubilar et al. 2011; Acevedo et al. 2011; Elgueta et al. 2012). The biopurification framework (BS) is a biological and practical innovation to diminish pesticide pollution of soil and water (Castillo and Torstensson 2007). The BS is made out of straw, peat and soil and its proficiency depends on the capacity to hold and debase pesticides by indigenous soil microorganisms. A few reports on the significance of microbial networks engaged with pesticide corruption in BS are accessible (Marinozzi et al. 2013). Studies have depicted the utilization of atomic strategies, for example, denaturing slope gel electrophoresis (DGGE) (Coppola et al. 2012; Marinozzi et al. 2013; Tortella et al. 2013). Coppola et al. (2012) portrayed a change in microbial decent variety after the expansion of pesticides and showed that yeasts and ascomycete filamentous parasites are associated with the pesticides corruption in BS. Tortella et al. (2013) assessed the microbial network structure during atrazine corruption in a BS and watched little effect.
?????????????????????????????????????????????????????????????????????????Rodríguez-Couto ???2001 ??Sanchez?2009 ??????????????????????????? WRF???????????????????????????????????????Rao ???2014 ??????????????????????????????Newcombe ? Crowley?1999 ??Fan ? Song?2014 ??Zhang ???2014 ????????????? WRF ? Castillo ??? (2001) ????????? P. chrysosporium ????? 14 ???? 91% ??????????????WRF ????????????????????????????????????????? (Pepper ???2002)?????????????????????????????? (Walter ???2004?Smith ???2005)?????????????????????????????????????????????????????????????? (Walter ???2005?Schmidt ???2005?Ford ???2007)?
Walter ?? (2004) ??????????-???-????? (SCS) ? T. versicolor ??????? PCP ??????Portage ?? (2007) ??? T. versicolor (3-175 g kg-1 ???) ?????????? (100-2137 mg kg-1 PCP) ?? PCP ????????????????????? PCP ??????????????????????Schmidt ?? (2005) ???????????????????? T. versicolor ??????????????????????Rubilar ??(2011) ?????? A. ?? P. chrysosporium ??????????? PCP ???????????????????????????????? MnP ???????????????????????????????? 75%?????????????????????? A. ????? BS ?????????????