抽象的

Three-Dimensional Relativistic Shrinkage PK One-Dimensional Lorentz Shrinkage

Runsheng Tu

Ignoring the internal structure of moving objects and treating them as rigid bodies is not only out of practice but also inconsistent with the spirit of scientific exploration. To change this status quo, consider the relativistic effects of real object motion. Consider the mass-velocity relationship as an initial mechanism to discuss the effect of velocity on the space around an object and on the volume of the object. A series of new conclusions are obtained, such as "the space distortion of a moving system with mass due to inertial motion at ultra-high speed, and even the generation of neutron like stars or black holes", and the 3D contraction of moving objects due to inertial motion, which can oppose the corresponding old views. This confrontation threatens the status of the theoretical criterion "covariant under Lorentz transformation", and thus has a great impact on the whole field of theoretical physics.

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
开放学术期刊索引 (OAJI)
参考搜索
哈姆达大学
印度科学网
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多