抽象的

TEXT INDEPENDENT SPEAKER IDENTIFICATION WITH PRINCIPAL COMPONENT ANALYSIS

D. Vijendra Kumar, K.Jyothi, Dr.V.Sailaja, N. M. Ramalingeswara rao

Principal Component analysis (PCA) is useful in identifying patterns in data, and expressing data in a manner which highlights their similarities and differences. This concept was extracted to reduce high dimensional Melâ??s Frequency Cepstral Coefficients (MFCC) into low dimensional feature vectors. Since MFCCâ??s are high in dimensions and truncation of these dependent coefficients may lead to error in identification of speakerâ??s speech recognition. In this paper text independent speaker identification model is developed by combining MFCCâ??s with PCA to obtain compressed feature vectors without losing much information. Generalized Gaussian Mixture Model (GGMM) was used as modeling techniques by assuming the new feature vectors follows (GGMM) [Reynolds, (1995)] [7]. The experiment was done with 40 speakers with 10 utterances of each speaker locally recorded database

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多