抽象的

Study on Improvement of Damping in Jointed Cantilever Beams Using FEM

R.C. Mohanty , Rajendra Kumar Mohanty , B.K. Nanda

Damping in built-up structures is produced by the energy dissipation due to micro-slip along the frictional interfaces. The analysis of the problem has been carried out using Finite Element Method (FEM). A finite element model of the linear elastic system has been formulated using the Euler-Bernoulli beam theory to investigate the damping phenomena in riveted connections. The discrete element system having two degrees of freedom per node representing v and ï?¶v ï?¶x has been used for the analysis. The solution considers one-dimensional beam elements with each one consisting of two nodes having two degrees of freedom, i.e. transverse displacement and rotation at each node. The generalized stiffness and mass matrices for this element has been derived. Extensive experiments have been conducted for the validation of the analysis. From this study, it is established that the damping capacity increases and the natural frequency decreases due to the joint effects.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多