抽象的

Stateless Routing for Wireless Networks Using Ravenous Perimeter

Anwar Ahsan, U T Nagdeve

We present Ravenous Perimeter Stateless Routing (RPSR), a novelrouting protocol for wireless datagram networks that uses the stateof routers and a packet's target to make packet forwardingdecisions. RPSR makes ravenousforwarding decisions usingonly information about a router's immediate neighbors in thenetwork topology. When a packet reaches a region where ravenous forwarding is unfeasible, the algorithm recovers by routing in the order ofthe perimeter of the region. By keeping state only a propos the localtopology, RPSR scales better in per-router state than shortest-pathand ad-hoc routing protocols as the number of network targetsincreases. Under mobility's frequent topology changes;RPSR canuse local topology information to find correct new routes quickly.We describe the RPSR protocol, and use extensive simulation of portable wireless networks to compare its performance with that ofDynamic Source Routing (DSR). Our simulations demonstrate RPSR'sscalability on densely deployed wireless networks