抽象的

SEMI-INVARIANTS FORMS: ABSOLUTE FINITE REFLECTION CLASS

Mukesh Kumar

Let G be a finite group of complex n n unitary matrices generated by reflections acting on Cn. Let R be the ring of invariant polynomials, and be a multiplicative character of G. Consider the R-module of -invariant deferential forms and the R-module of -invariants in the exterior algebra of derivations. We define a natural multiplication on these modules using ideas from arrangements of hyper planes. We show that this multiplication gives each module the structure of an exterior algebra. We also define a multi-arrangement associated to , and formulate the relationship between _-invariants and logarithmic forms. We introduce a new method of computing basic derivations and the generating _-invariants and give explicit constructions for the exceptional irreducible reflection groups.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

谷歌学术
学术期刊数据库
打开 J 门
学术钥匙
研究圣经
引用因子
电子期刊图书馆
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多