抽象的

Regenerative Braking System of Electric Vehicle Driven By BLDC Motor Using Neuro- Fuzzy and PID

V.Sindhuja, G.Ranjitham

Regenerative braking can improve energy usage efficiency and can extend the driving distance of Electric Vehicles. Innovative Regenerative Braking System of EV driven by BLDC motor is recommended. In this technique, Brushless DC motor is controlled by traditional Proportional Integral Derivative control, and the braking force distribution is done by ANFIS. This reasoning is quite sluggish compared to PID. Thus PID is used to control the negative torque of the motor when brake is pressed. This fresh elucidation has improved performance in regard to insight, strength, and efficiency. The suggested system grants the simulation results by analysing the speed of motor with its braking force and the vehicle’s battery charge under the IDE of Simulink. The results illustrates that the Neurofuzzy logic and PID control can recognize the regenerative braking can prolong the driving distance of EVs under the condition of confirming quality of braking condition. Eventually, the proposed method is proved using MATLAB R2014a software.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多