抽象的

Reduced Contrast Medical Image Estimation using Information Divergence Measure based on Iterative Algorithms

Arash Kalami

We proposed a new information divergence measure, referred to as divergence, which satisfies the requirements. A decision map is then generated by applying the divergence to measure the coherenceof sourceactivity maps at the pixel level. We further segment the decision map into two regions. It is the set of pixels whose activity patterns are similar in all the sourceimages, while it is the set of pixels whose activity patterns are different. Our fusionscheme is to find the solution for optimization problem.In fact that averaging results in reduced contrast for all the patterns which appear in only one source. On the other hand, maximum selection scheme produces some mosaic like artifacts due to the high frequency noise introduced by a sudden switch between two sets of source wavelet coefficients

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
全球影响因子 (GIF)
引用因子
宇宙IF
电子期刊图书馆
参考搜索
哈姆达大学
世界科学期刊目录
印度科学网
学者指导
普布隆斯
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多