抽象的

Privacy Preserving Clustering Based on Discrete Cosine Transformation

M. Naga lakshmi, K Sandhya Rani

The information related to an individual or an organization could be compromised when the patterns extracted from large databases through data mining technology. Privacy preserving data mining which is a new research area has been evolved in order to find the right balance between maximizing analysis results and minimizing the disclosure of private information. In this paper, a Discrete Cosine Transformation (DCT) based data distortion method is proposed for privacy preserving clustering in centralized database environment. The experimental results proved that the proposed method efficiently protects the private data of individuals and retains the important information for clustering analysis.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多