抽象的

Prediction behavior of high frequency modulated by a 16 lengths Golay code undergoing honey attenuation

Vincent De Paul  

Optical microscopic analysis of honey is time consuming due to the period needed to prepare samples. Time reduction could be achieved with ultrasound microscopy. This paper investigates the behavior of 125 MHz signal modulated by 16-bits Golay code spread out through a honey sample containing pollen. A bipolar phase shift keying (BPSK) modulation of 125 MHz frequency by 16-bits Golay code was implemented in Simulink/Matlab environment. The frequency implemented was set up considering the acoustic properties of honey containing pollen, the thickness of the sample and the size of pollen. At this frequency, the evaluated attenuation coefficient of honey containing pollen was 0.135 dB/µm/MHZ(γ =1); it depends on the power factor γ related to the scattering medium, and the delay induces by the size of pollen. The impact of these parameters, added to 5dB White Gaussian Noise on 200 V magnitudes BPSK Golay sequences, decreased the autocorrelation function magnitude from 8×104 V to 1.5×104 V. The width (Wd) decreases from 4 ns at 0.135 dB/µm/MHz(γ =1) to 3.5 ns at 16.875 dB/µm/MHz(γ =2), when the Pulse Side lobe Level (PSL) increases from -22.79 dB at 1.509 dB/µm/MHz(γ =1) to -9.54 dB at 16.875 dB/µm/MHz(γ =2).  

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
全球影响因子 (GIF)
引用因子
宇宙IF
电子期刊图书馆
参考搜索
哈姆达大学
世界科学期刊目录
印度科学网
学者指导
普布隆斯
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多