抽象的

Personalized Ontology Based on Consumer Emotion and Behavior Analysis

Saranya.R, Sathya.R, Umaiyal.R.M, Kanmani.P

The relationships between consumer emotions and their buying behaviors have been well documented. Technology-savvy consumers often use the web to find information on products and services before they commit to buying. We propose a semantic web usage mining approach for discovering periodic web access patterns from annotated web usage logs which incorporates information on consumer emotions and behaviors through self-reporting and behavioral tracking. We use fuzzy logic to represent real-life temporal concepts (e.g., morning) and requested resource attributes (ontological domain concepts for the requested URLs) of periodic pattern based web access activities. These fuzzy temporal and resource representations, which contain both behavioral and emotional cues, are incorporated into a Personal Web Usage Lattice that models the user’s web access activities. From this, we generate a Personal Web Usage Ontology written in OWL, which enables semantic web applications such as personalized web resources recommendation. Finally, we demonstrate the effectiveness of our approach by presenting experimental results in the context of personalized web resources recommendation with varying degrees of emotional influence. Emotional influence has been found to contribute positively to adaptation in personalized recommendation.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多