抽象的

Parallel and Pipeline Pattern Matching Strategy forLow Power Applications

Kiruthika.T, Brindha.P

One broadly used method for representing membership of a set of items is the simple space-efficient randomized data structure known as Bloom filters. Generally the regular Bloom filter suffers in terms of power consumption and FPR (False Positive Rate). To overcome this we proposed two methods. The pipelined Bloom filter architecture for k-stages has been proposed to attain the significant power saving. The second method is the parallel Bloom filter that reduces the FPR. Further a novel Bhsequence scheme is introduced in this pooled pipelined and parallel Bloom filter architecture to reduce the FPR. Through this method around 10%-20% of the power saving can be achieved. Bloom filters are used in network security applications such as web caches, resource routing, network monitoring.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多