抽象的

OPTICAL PROPERTIES AND PHOTO CATALYTIC ACTIVITIES OF TITANIA NANOFLOWERS SYNTHESIZED BY MICROWAVE IRRADIATION

Haizel G. Roy

TiO2 nanostructures with flower like morphology was synthesized by a simple microwave assisted acid hydrolysis of TiCl3. Tuning the morphology was achieved by the microwave treatment and the nature of the medium or the precipitating agent. As-synthesized titania nanoflowers, was characterized by X-ray diffraction (XRD), UV-Visible spectroscopy, Infrared spectroscopy (IR) and Scanning Electron Microscopy (SEM). The BET surface area, pore size distribution and pore volume of the samples were measured using a static volumetric system, Micromeritics ASAP 2010 equipment. The as-prepared TiO2 nanoflowers appear to be single crystalline phase and the diameter is about 33.55 nm. The Photocatalytic activity studies reveal that the as-synthesized rutile titania nanoflowers show higher photocatalytic activity. In most cases, rutile TiO2 nanoparticles show poor photocatalytic activities than the pure anatase phase. Interestingly, the single phase rutile TiO2 nanocrystals with flower like morphology formed in the absence of any additives exhibited higher photocatalytic activity than the famous commercial photocatalyst Degussa P- 25 on the photocatalytic degradation of Methyl Red.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多