抽象的

ON UNIFORM CONTINUITY AND COMPACTNESS IN PSEUDO METRIC SPACES

Dr. S.M.Padhye and Ku. S.B. Tadam

The Pseudo-metric spaces which have the property that all continuous real valued functions are uniformly continuous have been studied. It is proved that the following three conditions on pseudo-metric space X are equivalent a] Every continuous real valued function on X is uniformly continuous. b] Every sequence {xn} in X with lim d(xn) = 0 has a convergent subsequence. c] Set A is compact and for every ð?¿1 > 0, there is ð?¿2 > 0 such that d(x, A) > ð?¿1 implies d(x) > ð?¿2 . Here A = set of all limit points of X and d(x) = d(x, X- {x}) Further it is proved that in a pseudo-metric space X, a subset E of X is compact if and only if every continuous function f:E → R is uniformly continuous and for every ð?? > 0 the set {x ð?? E / d(x) > ð??} is finite

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多