抽象的

Offline Kannada Handwritten Word Recognition Using Locality Preserving Projection (LPP) for Feature Extraction

M.S. Patel, Rohith Kumar, S.C. Linga Reddy

Offline Handwritten Word Recognition (HWR) plays a major role in the field of image processing and pattern recognition. Compared to online recognition, handwritten words cannot be identified easily because of the variations in the handwriting styles, type of paper used, quality of the scanner etc. In our paper we have focused on the Kannada handwritten word recognition. Large number of characters present in the Kannada language makes it as a open problem for the researchers. Major steps in offline Kannada HWR are preprocessing, feature extraction, and classification. Locality Preserving Projections (LPP) method is used here for the feature extraction. For the classification Support Vector Machines (SVM) is used. Result is compared with the K-Means classifier. Experimental results show that SVM is better than K-Means classifier for our data set.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多