抽象的

Moving Object Tracking in Video Sequence Using Dynamic Threshold

V.Elavarasi, S.Ringiya, M.Karthiga

Most tracking-by-detection algorithms train dis-criminative classifiers to separate target objects from their surrounding background. In this setting, noisy samples are likely to be included when they are not properly sampled, thereby causing visual drift the multiple instance learning (MIL) paradigm has been recently applied to alleviate this problem However, important prior information of instance labels and the most correct positive instance (i.e., the tracking result in the current frame) can be exploited using a novel formulation much simpler than an MIL approach. In this paper, we show that integrating such prior information into a supervised learning algorithm can handle visual drift more effectively and efficiently than the existing MIL tracker. We present an online discriminative feature selection algorithm that optimizes the objective function in the steepest ascent direction with respect to the positive samples while in the steepest descent direction with respect to the negative ones. Therefore, the trained classifier directly couples its score with the importance of samples, leading to a more robust and efficient tracker. Numerous experimental evaluations with state-of-the-art algorithms on challenging sequences demonstrate the merits of the proposed algorithm.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证