抽象的

Modified Watershed Segmentation with Denoising of Medical Images

Usha Mittal, Sanyam Anand

De-noising and segmentation are fundamental steps in processing of images. They can be used as preprocessing and post-processing step. They are used to enhance the image quality. Various medical imaging that are used in these days are Magnetic Resonance Images (MRI), Ultrasound, X-Ray, CT Scan etc. Various types of noises affect the quality of images which may lead to unpredictable results. Various noises like speckle noise, Gaussian noise and Rician noise is present in ultrasound, MRI respectively. With the segmentation region required for analysis and diagnosis purpose is extracted. Various algorithm for segmentation like watershed, K-mean clustering, FCM, thresholding, region growing etc. exist. In this paper, we propose an improved watershed segmentation using denoising filter. First of all, image will be de-noised with morphological opening-closing technique then watershed transform using linear correlation and convolution operations is applied to improve efficiency, accuracy and complexity of the algorithm. In this paper, watershed segmentation and various techniques which are used to improve the performance of watershed segmentation are discussed and comparative analysis is done.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多