抽象的

Modeling and experimental validation of drying processus of the microalgue Spirulina with consideration deformation and flow mass

A. Compaoré    

The profiles of the material transfer properties in porous products such as Spirulina platensis during drying which characterize their behavior are often determined from different experimental points by destruction of the samples. However, for a long drying time, it’s impossible to slice or cut the sample correctly because of its mechanical strength and friability. It influences the evaluation of product in cylindrical form properties during all periods of drying. The study aim to propose a model to determine the evolution of water parameters of the micro-alga Spirulina platensis during an isothermal drying. A diffusive model taking into account the deformation and the mass flow of the product is proposed. The digital resolution and the experimental measurements over a period of 120 h of drying have shown a  variation of water content (kgw/kgdm) of the order of 3.12 at 0.41 in the opposite direction of the product thickness and of flow (kgw/m2.s) in the order of 9.26 10-10 at 2.63 10-8. The proposed model satisfactorily validates the experimental drying kinetics over all drying periods and the water content profiles for thicknesses less than 10 mm. The value of R2 obtained is of the order of 0.980, indicating a good correlation between the experimental and predicted data; whereas the root mean square error is around 0.013, showing a very good match between experimental and modeled kinetics.  

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
全球影响因子 (GIF)
引用因子
宇宙IF
电子期刊图书馆
参考搜索
哈姆达大学
世界科学期刊目录
印度科学网
学者指导
普布隆斯
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多