抽象的

Measurement of the Magnetic Monopole Charge, the Missing Link in Quantum Mechanics, Aether and the Dark Energy

Eue-Jin Jeong, Dennis Edmondson

Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have reported the possibility, the Earth should show signs of having magnetic monopole charge on a macroscopic scale since neutrons must also have magnetic monopole charge if general charge conservation principle is valid. To test this hypothesis, experiments were performed to detect the collective effect of magnetic monopole charge of neutrons on the earth's equator using two balanced high strength neodymium rod magnets. We were able to identify non-zero magnetic monopole charge of the individual neutrons from the experiments. The presence of individual magnetic monopole charges in the universe prompted proposition of the new symmetric form of Maxwell's equations. Based on the theoretical investigation of the new Maxwell's equations, we conclude that magnetic monopole neutrinos are the cause of the origin of quantum mechanical uncertainty, dark energy and the medium for electromagnetic wave propagation in space.

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
开放学术期刊索引 (OAJI)
参考搜索
哈姆达大学
印度科学网
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多