抽象的

LIE DETECTION SYSTEM USING ARTIFICIAL NEURAL NETWORK

Nidhi Srivastava and Dr. Sipi Dubey

In this paper, we demonstrate that we can use non-invasive physiology sensing to detect stress and lying, within the context of Artificial Neural Network. We show how simply derived non-invasive physiological features such as voice pitch variation, and heart rate variability are correlated to a number of high stress situations found in real life. Using these features, we can develop simple linear models that can be used to identify stress and bluffing.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

谷歌学术
学术期刊数据库
打开 J 门
学术钥匙
研究圣经
引用因子
电子期刊图书馆
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多