抽象的

Kernel Based Process Level Authentication Framework for Secure Computing and High Level System Assurance

Pradnya Patil, Shubham Joshi

modern operating system kernels level security is not present and a well-known approach to protecting systems from malicious activity is through the deployment of Mandatory Access Control (MAC). Existing MAC solutions belongs to authorization mechanism however authorization mechanism along is not sufficient for achieving system assurance. Today’s modern computing era operating system Kernel should have process level authentication mechanism, where process of user level application proves its identity to kernel. Current process authentication is done using information such as process names or an executable path that is conventionally used by OS to identify a process is not reliable. This may results as malware may impersonate to other processes thus violating of system assurance can occur. We propose a lightweight secure application authentication framework in which user-level applications are required to present proofs at runtime to be authenticated to kernel. In order to demonstrate the application of Process Authentication proposed System Call monitoring framework for preventing unauthorized use or access of system resources like HDD, RAM. It verified the identity of processes before completing the requested System calls.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证