抽象的

Impact of Encryption Techniques on Cassification Algorithm for Privacy Preservation of Data

Jharna Chopra, Sampada Satav

In this paper, the Naïve Bayesian and K-Nearest neighbour algorithms have been implemented for classification and AES, Triple DES and Rijndael on nine real-world datasets. The goal of the research is to evaluate the performance of the classification algorithms when the data set is encrypted using a variety of performance metrics: classification accuracy, precision, recall (sensitivity), specificity and lift charts/gain charts and to determine the impact of encryption on these algorithms. We found that aside from the obvious time penalty the implementation of an encryption algorithm to protect user privacy the performance of the classification algorithms remained the same in most of the datasets. However, the time penalties for encrypting the data before it could be used for classification varied greatly depending on the type of algorithm used to encrypt the data.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多