抽象的

Image Denoising Techniques Using Wavelets

S.Y.Pattar,

The focus of this work is to develop performance-enhancing algorithm for denoising the signal by using wavelet transformation. The earlier methods used for denoising were based on FFT, where signal is transformed in to frequency domain and soft and hard threshold has been carried out for denoising. After comparing the performances, it has been seen if temporal characteristics of signal can be preserved, it would give better result .Thus, wavelet based denoising came into picture where transformation results in perseverance of frequency and temporal characteristics of the signal. In wavelet based denoising, while applying threshold techniques few signals are also lost. If the lost signal can be retrieved using signal statistical properties, it would give better result in terms of SNR. We tried to recover the lost signal in details part Importance of denoising comes when we talk about images, which play an important role in daily life application. Different techniques have been used for denoising of image, but these lose some of the image characteristics. We modified the existing stochastic algorithm to make it more adaptive. The results for Lena image are presented to establish the advantages that our modified stochastic algorithm provides over other techniques.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多