抽象的

High Frequency and Unstructured Data in Finance: An Exploratory Study of Twitter

William Sanger, Thierry Warin

Objective: In this paper, we investigate the question to know whether information spread over Twitter can be useful to design investment strategies on financial markets.

Methods: We compare the influence of two kinds of messages sent on Twitter over two types of returns concerning firms listed on the S&P500. We use logistic-based models to assess the probability of having certain types of returns based on messages published on Twitter.

Results: Financial tweets are positively correlated with higher intraday and overnight returns (1 to 5% returns) while being negatively correlated with lower returns (0 to 1% returns). Non-financial tweets are not significantly related to such returns.

Conclusion: From a practical standpoint, investment strategies could be designed following these findings to optimize some gain opportunities depending on the investment day, the targeted industry and live activity on Twitter.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

谷歌学术
学术期刊数据库
打开 J 门
学术钥匙
研究圣经
引用因子
电子期刊图书馆
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多