抽象的

FRAUD DETECTION IN MOBILE TELECOMMUNICATION

Fayemiwo Michael Adebisi and Olasoji Babatunde

Fraud has been very common in our society, and it affects private enterprises as well as public entities. However, in recent years, the development of new technologies has also provided criminals more sophisticated way to commit fraud and it therefore requires more advanced techniques to detect and prevent such events. The types of fraud in Telecommunication industry includes: Subscription Fraud, Clip on Fraud, Call Forwarding, Cloning Fraud, Roaming Fraud, and Calling Card. Thus, detection and prevention of these frauds is one of the main objectives of the telecommunication industry. In this research, we developed a model that detects fraud in Telecommunication sector in which a random rough subspace based neural network ensemble method was employed in the development of the model to detect subscription fraud in mobile telecoms. This study therefore presents the development of patterns that illustrate the customers’ subscription's behaviour focusing on the identification of non-payment events. This information interrelated with other features produces the rules that lead to the predictions as earlier as possible to prevent the revenue loss for the company by deployment of the appropriate actions.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多