抽象的

FPGA Based Multiobject Feature Extraction For Object Recognition

M.Monica dhana ranjini, P.Gnana skanda parthipan,G . Prabhakar

In the arrival of today’s highly integrated multimedia device and fast emerging applications, image processing have become more important than any others. These devices require complex image processing tasks lead to a very challenge design process as it demands more efficient and high processing systems. The scope of the project is to extract locations and features of multi objects in an image for object recognition. For low power consumption and better performance we design a proposed system in FPGA. In existing system an cell based multi object feature extraction algorithm is used to extract simultaneously autocorrelation feature of objects. It is calculated using zeroth order and first order moments to obtain the size and location of multiple objects. To reduce computational complexity and memory consumption, Local Binary Pattern (LBP) and Local Ternary Pattern (LTP) is used to extract the feature of multiple objects are proposed. In the local binary pattern, the LBP value is computed by comparing a gray level value of centre pixel in an image with its neighbors. The local ternary pattern is extended from LBP to threevalued code in which gray values are quantized to zero,+1,-1. The proposed architecture is designed using verilog HDL, simulated using Modelsim software and synthesized using Xilinx project navigator.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多