抽象的

Fisher Score Dimensionality Reduction for Svm Classification

Arunasakthi. K , KamatchiPriya.L, Askerunisa.A

The Support Vector Machine is a discriminative classifier which has achieved impressive results in several tasks. Classification accuracy is one of the metric to evaluate the performance of the method. However, the SVM training and testing times increases with increasing the amounts of data in the dataset. One well known approach to reduce computational expenses of SVM is the dimensionality reduction. Most of the real time data are non- linear. In this paper, F- score analysis is used for performing dimensionality reduction for non – linear data efficiently. F- score analysis is done for datasets of insurance Bench Mark Dataset, Spam dataset, and cancer dataset. The classification Accuracy is evaluated by using confusion matrix. The result shows the improvement in the performance by increasing the accuracy of the classification.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多