抽象的

Finite Element Method Based Modeling for Cutting Force Predication in Orthogonal Cutting Process

A Hatem Ali*, B Tarek M El Hossainy and CM Abd-Rabou

This paper deals with plane strain modeling using finite element method (FEM) in orthogonal cutting process. The main objective is to simulate the cutting process using finite element program code (Abaqus /CAE) and extract the cutting force – tangential force- due to its vital role in machining. The experimental work includes dynamometer calibration and using it during orthogonal cutting of steel pipes by tungsten carbide tool-tip on center lathe machine to indicate the cutting force. Also, this paper presents a comparative study between two simulation methods; Lagrangian method and Arbitrary Lagrangian- Eulerian (ALE) method. The comparative study discusses the accuracy, stability and chip form of the extracted results from the two models comparing with the experimental data. Johnson-Cook (J-C) model is used for the finite element model to define the plastic and damage properties of the simulated materials.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多