抽象的

FEATURE DETECTION APPROACH FROM VIRUSES THROUGH MINING

Raviraj Choudhary, Ravi Saharan

Anti-virus systems traditionally use signatures to detect malicious executables, but signatures are over fitted features that are of little use in machine learning. Other methods seek to utilize more general features, with some degree of success. Through this paper we present a new approach that conducts an exhaustive feature search on a set of computer viruses. This method detects mnemonics patterns in large amounts of data, and uses these patterns to detect future instances in similar data. We use apriori algorithm for select features to detect malicious executables. Through those features we make a rule set or detection model for trained over a given set of training data.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

谷歌学术
学术期刊数据库
打开 J 门
学术钥匙
研究圣经
引用因子
电子期刊图书馆
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多