抽象的

Fast Data Collection Using Two-Layer Multicast Communication Protocol in Wireless Sensor Networks

K.Priyadharshini, S.Bhuvenswari, R.Arun, K.Cholaraja

we investigate the following fundamental question - how fast can information be collected from a wireless sensor network organized as tree structure? To address this, we discover and evaluate a number of different techniques using realistic simulation models under the many-to-one communication paradigm known as convergecast. We primarily consider time scheduling on a single frequency channel with the aim of minimizing the number of time slots required (schedule length) to complete a convergecast. Secondarily, we combine scheduling with transmission power control to mitigate the effects of interference, and illustrate that while power control helps in reducing the schedule length under a single frequency. We also illustrate the performance of various channel assignment methods and find empirically that for moderate size networks of about 80 nodes, the use of multi-frequency scheduling can suffice to eliminate most of the interference. The data collection rate is no longer remains limited by interference but by the topology of the routing tree. To this conclude we construct degree-constrained spanning trees and capacitated minimal spanning trees. Finally, we evaluate the impact of different interference and channel models on the schedule length.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证