抽象的

Enhancement of Subspace Clustering For High Dimensional Data

V.R.Saraswathy, Dr.N.Kasturi, V.Lathika

Clustering is a technique for grouping of similar objects among different objects from the dataset. Traditional clustering algorithms are more suitable for fewer dimensions. Feature selection can be used to select the relevant features from high dimensional dataset to improve the formation of clusters. In these methods the relationship between objects is not preserved since an object cannot be a member of more than one cluster. Subspace clustering is the solution to this problem, which preserves the relationship between objects. Semisupervised learning along with Subspace clustering uses the partial background knowledge which improves the cluster formation results. Constrained Laplacian Score is semi supervised based feature selection method for selecting the relevance feature. This method preserves the local and constraints ability among data objects. The combination of semi supervised clustering and feature selection enhances the subspace clustering process. Experimental results show that the semi supervised subspace clusters formed with semi supervised feature selection have good accuracy than the semi supervised subspace clusters formed only with the relevant dimensions.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多