抽象的

EMB Position Control Using a PI Gain Scheduling Method

Donghoon Ban , Sungho Jin , Jaeseung Hong

A brake system is a nonlinear system which applies different compressive force depending on the position of the brake pad. The EMB(electric mechanical brake) used in passenger vehicles cannot detect the compressive force without a sensor. Therefore, it has different operating times at the same distance because the brake caliper applies different force depending on the position of the brake pad. A position controller for the EMB system was developed to control the operating time robustly at the same distance. A vector control method was used to operate the motor. The result of the position controller was used as the Q axis reference for the vector control method. The PI gain of the position was defined differently to meet the same operating time of the motor on each sector. In addition, the interval value between each position was calculated using an interpolation method. A PI gain of the position controller was tuned using the MATLAB tool, and the reliability of the position controller was verified through a simulation in the MATLAB. The verified PI controller was installed in an EMB system. The operating times were measured on each sector, showing that they were nearly identical. The proposed PI scheduling method was confirmed to have robust characteristics in a nonlinear EMB system with different amounts of compressive force depending on the position of the brake pad.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多