抽象的

DESIGN OF 8-PORT ADAPTIVE NETWORK ON CHIP

A.Prasannah Rajasingh, S.Rajkumar

Networks-on-chip (NoCs) have emerged as a promising on-chip interconnect for future multi/many-core architectures as NoCs are able to scale communication links with the growing number of cores. In this paper, we present an adaptive route allocation algorithm which provides a required level of QoS (guaranteed bandwidth) coupled with an adaptive buffer assignment scheme which reassigns buffer blocks up-demand.Inaddition, the adaptivity requires a comprehensive, hardly invasive, runtime discernibility infrastructure, i.e., using supervising components, in order to collect data on the system put forward. The area overhead brought in by the adaptive scheme can be traded off against the tractability acquired. furthermore, the area operating cost is also reduced by resource manifolding due to the on-demand buffer assignment at each output port (we achieved on an average 42% buffer saving in our experiments).The proposed network-On-Chip can be modelled using Verilog HDL and simulated using Modelsim software.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多