抽象的

Combination of Radon and Hue Composite Features for Retrieval of Shapes

Tohid Sedghi

This paper proposes a simple Shape-Based Retrieval (SBR) systems, which a novel feature-based shapes descriptors using Radon composite features by using statistical and spectral analysis are used in this system, Instead of analyzing shapes directly in the spatial domain. SBR systems employ Texture as primary feature with shape secondary features. Till now systems exploit spatial features. None of the available systems combines all features, texture, and shape for retrieval. Moreover relatively few systems use Radon Transform in texture extraction features, despite the widely acclaimed efficiency. The proposed system uses combination of integrated first and second moments of radon transformed image features, and Hue Moments features of the regions as shape features then Linear Discriminated Analysis (LDA) are applied for decreasing the dimension of feature vector and non linear combination of vector dimensions for generating optimum features. Experiments demonstrate that proposed novel feature-based shapes system provides a higher degree of retrieval and are compared with several state-of-the-art approaches.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
全球影响因子 (GIF)
引用因子
宇宙IF
电子期刊图书馆
参考搜索
哈姆达大学
世界科学期刊目录
印度科学网
学者指导
普布隆斯
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多