抽象的

CLUSTER DETECTION USING GA-KNN CONJUNCTION APPROACH

This Paper provides insights into data mining solution for mining customer‟s information from customer opt-in database of mCRM. The basis of approach is to use a K nearest neighbor algorithm to learn how to classify samples within different clusters of interest. Therefore a new approach using Genetic Algorithm is followed in this paper to overcome some of the shortcomings of the K nearest neighbor algorithm, by allowing the system to learn to warp the n-dimensional feature space so as to maximize the clustering of individuals within a class, and at the same time maximize the separation between classes. The Output of the Genetic Algorithm is acting as input to the K nearest neighbor algorithm And finally the global clusters are being formed and the customization for a particular Customer is done seeing in which Cluster a particular customer falls. The main result of this paper indicates that GA-KNN Conjunction may be an effective element to mCRM. Data mining from the customers‟ database, stores can offer their customers interesting services via the mobile medium (SMS/MMS) and can retain customers with different ways and maintain fruitful relations with their customers based on trust.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

谷歌学术
学术期刊数据库
打开 J 门
学术钥匙
研究圣经
引用因子
电子期刊图书馆
参考搜索
哈姆达大学
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多