抽象的

Classification of Documents in E-Learning Using Multidimensional Latent Semantic Analysis

R.Archana, M.Ravichandran

In this paper we consider the problem of dimensionality reduction techniques. Two techniques such as Independent Component analysis (ICA) and multidimensional latent semantic analysis (MDLSA) are proposed. A new document analysis method named multidimensional latent semantic analysis (MDLSA) which resolves the problem of in-depth document analysis, mines local information from a document efficiently with respect to term associations and spatial distributions. The MDLSA first partitions each document into paragraphs and later builds a term ―affinity‖ graph. Each element of this graph represents the frequency of term co-occurrence in a paragraph. We then use Independent Component Analysis (ICA) which finds a linear representation of nongaussian data such that the components are statistically independent. Thus these two techniques are examined in retrieving and classifying the e-learning documents. It is also proven by experimental verifications that the proposed technique outperforms current algorithms with respect to accuracy and computational efficiency.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多