抽象的

Cancer Detection by Cell Segmentation Using Clustering and Watershed Algorithms

C.Ramya, V.Nirmala

Biopsy is one of the medical tests for skin cancer detection. A recent biopsy procedure requires invasive tissue removal from a living body. It is time consuming and complicated task. So non-invasive in-vivo virtual biopsy is preferable one, which is processed by automatic cell segmentation approach. The key component of the developed algorithms are Watershed transform that use the concept of morphological image processing and incorporate some principles of convergence index filter are used to segment cells in invivo virtual biopsy of human skin. This paper improves the success of automated cell segmentation for skin cancer diagnosis. This paper also presents different approaches involved in automated cell segmentation and identification of skin cancer at an earlier stage.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多