抽象的

Best Parameter Interval for Ridge Estimates by Resampling Method

Ifte Khyrul Amin Abbas , Pk. M. Motiur Rahman

Ridge regression, first proposed by Horel and Kennard [1], is one of the most popular estimation procedures for combating multicollinearity in regression analysis. Although controversial, it is a widely used method to estimate the regression parameters to an ill-conditioned model. Ridge estimates seem to be motivated by a belief that, least square estimates tend to be too large, particularly when there exists any kind of multicollinearity. It gives us a smaller mean square error than OLS estimates for ill- conditioned data. In this paper the ridge procedure has been tried with an interval of shrinkage parameter which has been constructed through bootstrapping approach. Here the intention was to find such an interval for the shrinkage parameter for which the stability of the estimates could be visualized as well as expected change of sign of the parameter values could also be obtained. With this interval another important thing might roughly be obtained that for which value of the ridge parameter, the minimum GCV [2] occurs, could be found. For bootstrapping a random sample from the data matrix has been obtained for each repetition and for the stabilization of the coefficients the method of degrees of freedom trace (DF- trace), which was first proposed by Tripp [3], [14] in his doctoral dissertation, was followed.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多