抽象的

Application of Symbol Entropy based on Probability Distribution to Heart Sound Analysis

Xie-Feng C, Chen-Jun S, Yong MA, Ke-Xue S and Yu-qi J

Heart sound is an important physiological signal, and it contains a large number of physiological and pathological information. According to the characteristics of heart sound, the symbol entropy based on probability distribution is proposed. The algorithm makes a breakthrough at linear constraints. On the one hand, it distributes more symbols for the region where the amplitude distribution of the first heart is dense and distributes relatively less symbols for the sparse region, so as to achieve the reduction of redundancy of data; On the other hand, it use an self-adaptive method to determine the size of the symbol set. Then the symbol entropy becomes more sensitive to the changes of the heart sound signal and could capture rapidly the nonlinear abnormal state of heart signal. Thus the algorithm can make little or no impact of the non-stationary mutation interference and the sequence probability distribution on the entropy. Simulation results show that the algorithm not only has significant feasibility and effectiveness but also provides a new way for the rapid diagnosis of heart failure.

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
引用因子
宇宙IF
开放学术期刊索引 (OAJI)
参考搜索
哈姆达大学
印度科学网
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙
日内瓦医学教育与研究基金会
秘密搜索引擎实验室

查看更多