抽象的

An Intra-Bone Axial Load Transducer: Development and Validation in an In-Vitro Radius Model

Nikolas K Knowles, Michael Gladwell, Louis M Ferreira

A method to accurately measure forces through the radius is necessary due to the complex loading of the elbow. It was hypothesized that a custom axial load measurement device may allow for the accurate quantification of these unknown forces. This work reports on the design and validation of an axial load transducer interposed in the diaphysis of a long bone that maintains the native articular location. The performance of the device in quantifying axial loads is evaluated in an in-vitro isolated proximal radius model. The model was validated by statically applying linearly increasing proximal radius loads on a servo-hydraulic testing frame mounted using a pivot support to nullify reaction moments. The direction of net applied load was varied to simulate multiple forearm positions and flexion/extension angles (10, 20, 30 and 40 degrees). There was no significant difference between axial transducer load and expected load (p<0.001). Axial transducer loads were in close agreement with expected loads in all forearm positions for forearm angles up to 30 degrees. The results validated the efficacy of the device in measuring osseous loading while maintaining the native articular location.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

化学文摘社 (CAS)
谷歌学术
打开 J 门
学术钥匙
研究圣经
全球影响因子 (GIF)
引用因子
宇宙IF
电子期刊图书馆
参考搜索
哈姆达大学
世界科学期刊目录
印度科学网
学者指导
普布隆斯
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多