抽象的

An Effective Analysis of Macular edema Severity for Diabetic Retinopathy

M.Ramya , S.Vijayprasath

Recently, we have many researches on the fundus image for the detection of abnormality. Diabetic retinopathy (DR) is the damage of retina caused by complication of diabetes which results complete vision loss. Macula is responsible for our pinpoint vision. Diabetic macular edema (DME) is the major problem for the diabetic patients. Several techniques have been reported about an automated solution for the diabetic macular edema detection. An automated system for early detection of macular edema should classify all possible exudates present on the surface of retina. In this paper, two simple single class classifiers are used for the detection of abnormality. The normal retinal images are trained in these classifiers for the classification. The performance of the proposed methodology with the existing systems is evaluated based on classification accuracy. By finding the exudate, the proposed PCA DD classifier yields the highest classification accuracy compare to the Gaussian DD classifier. The overall severity accuracy for Gaussian DD and PCA DD is 84% and 92% respectively. Experimental result shows the superior nature of PCA classifier in terms of performance measures.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多