抽象的

An Accurate Subpixel Shift Registration in Noisy Image Using a Kernel Regression Method

Hossam Eldeen M. Shamardan

In this paper, a new accurate subpixel registration for pure shift estimation is proposed. The noise effect, which disturbs the quality of registration process , is taken into account. The kernel regression method which represents the field of nonparametric statistics is used as a tool for the estimat ion process due to its powerful capabilit ies in the field of both denoising and interpolation. The kernel regression depends on studying a local region intensities distribution and gradients. By applying gradient descent method, the global translation parameters can be estimated. Experimental results show that our proposed method can estimate the translation parameters accurately. Furthermore, our method performs well in noisy images.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多