抽象的

AI Based Low Power High Speed Daubechies Wavelet Filter Using VLSI Architecture

S.Karthick raja, R.Ganesan

A novel algebraic integer (AI) based multien- coding of Daubechies-12 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures empl- oying parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a multiplication-free and computationally accurate architect- ture. It also guarantees a noise-free computation throughput the multi-level multi-rate 2-D filtering operation. A single final reconstruction step (FRS) furnishes filtered and down-sampled image outputs in fixed-point, resulting in low levels of quantization noise. Daubechies-12 designs in terms of SNR, PSNR, hardware structure and power consumptions, for different word lengths are compared to Daubechies-12 and -6. SNR and PSNR improvements of approximately 41% were observed in favors of AI-based systems, when compared to 8-bit fixed-point schemes (six fractional bits). Further, FRS designs based on canonical signed digit representation and on expansion factors are proposed. The Daubechies-12 4-level VLSI architectures are prototyped on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device at 282 MHz and 146 MHz, respectively, with dynamic power consumption of 164 mW and 339 mW, respectively, and verified on FPGA chip using an ML605 platform.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证

索引于

学术钥匙
研究圣经
引用因子
宇宙IF
参考搜索
哈姆达大学
世界科学期刊目录
学者指导
国际创新期刊影响因子(IIJIF)
国际组织研究所 (I2OR)
宇宙

查看更多