抽象的

A Review: Implementation of Maximum Power Point Tracking Algorithm for PV System on FPGA

Nikhil A. Gawai, N. M. Wagdarikar

Photovoltaic power generation has two major problems: the conversion efficiency of existing PV modules is less and amount of power generated by PV system changes with weather conditions. Also, the PV cell I-V characteristics are non-linear due to complex relationship of voltage & current and varies with change in temperature or insolation. There is only one point on P-V or I-V curve called Maximum Power Point at which PV system operates at maximum efficiency and produces maximum output power. Failure to track MPP causes significant power loss. So, Maximum Power Point Tracking (MPPT) is required to operate PV system at MPP. The P&O algorithm and INC algorithm are commonly used methods to track MPP by adjusting duty cycle of DC-DC converter. The existing methods use microcontroller or DSP controller to implement MPPT algorithm. FPGA provides number of advantages over sequential machine microcontroller, as FPGA does concurrent operation i.e. instructions executed continuously and simultaneously. However DSP does signal processing related calculation only. Using FPGA number of components required is less and FPGA is faster than DSP. Thus, the size of components required for power converter decreases. The MPPT algorithm is implemented on FPGA which continuously track the maximum point under rapid environmental changes.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证